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Abstract-A series of numerical computations is used to study both the amount of power required to form 
a molten zone and the fluid flow inside the melt. The Navier-Stokes equations and energy equation are 
solved by a finite difference method, employing a boundary-fitted curvilinear coordinate system. The 
influences considered include : the magnitude of the input power, the width of the heated region, the fluid 
properties in the melt, and the heat-transfer condition of the ambient on the solid-melt interface. The 
present results show that the height of the molten zone increases significantly as the strength of the 
thermocapillary convection increases. For small Prandtl number fluids, when the input power increases, 
thermocapillary-flow instability in the melt may appear before the capillary instability (originating from 
the gas-melt interface) sets in. For higher Prandtl number fluids, the appearance of the capillary instability 
is more likely than thermocapillary-flow instability. The appearance of thermocapillary-flow instability 
may be also influenced by the ratio of the surface tension to the viscous force in the melt, the width of the 

heated region, and the heat loss to the ambient. 

1. INTRODUCTION 

IN RECENT years the float-zone crystal growth method 
has been widely used to grow high-purity single crys- 
tals because it precludes contamination and thermal 
stress resulting from the presence of a crucible. In 
practice, the size of the melt is limited by the capillary 
instability originating at the meniscus, while the shape 
of the solid-melt interface and the flow state present 
in the melt can significantly affect the quality of the 
resultant crystals. 

Thermocapillary flow, which is driven by tem- 
perature-induced surface-tension gradients along the 
free surface of the melt, is usually coupled with buoy- 
ancy-driven flow. The influence of the thermocapillary 
convection is dominant in float-zone crystal growths, 
especially under microgravity conditions or in small- 
scale systems. Experiments on thermocapillary con- 
vection in a model of the float-zone process performed 
by Schwabe et al. [l], Chun [2], Kamotani et al. [3] 
and Preisser et al. [4] have shown that flow instability 
occurs when the Marangoni number, which governs 
the strength of the thermocapillary convection, is 
higher than the critical Marangoni number Mu,, 
where Mu, is strongly dependent on the aspect ratio 
of the melt and the properties of the fluid in that melt 
[5]. Jurisch and Loser [6] have demonstrated that the 
strictly periodic, non-rotational W striations, which 
are generated by the oscillatory thermocapillary con- 
vection, may appear in the single molybdenum (MO) 
crystals. 

When the length of the molten zone approaches a 
critical value the capillary instability originating from 
the gas-melt interface sets in, and the float zone may 

fall out. Both experimental and theoretical studies [7, 
81 have shown that in a zero-gravity environment the 
maximum zone length of isothermal liquid bridges 
with rod radius R is equal to 27rR (Rayleigh limit). 
Coriell et al. [9], using the variational technique, 
showed that the maximum zone length decreases with 
an increase in the strength of the gravity compared 
with that of the surface-tension. Kim et al. [lo] have 
measured the maximum stable zone lengths in a float- 
zone growth of small diameter sapphire and silicon. 
The results are in close agreement with the theoretical 
results. The computational results of Chen et al. [ 1 l] 
show that the maximum length of the non-isothermal 
liquid bridges is below the Rayleigh limit, and is affec- 
ted by the strength of thermocapillary and buoyancy- 
driven convections, as well as the degree of surface- 
tension variation. In addition, the properties of a 
growth crystal may be influenced by the shape of the 
solid-melt interface during the growth. The exper- 
imental results of Kitamura et al. [12] have shown 
that screw dislocations tend towards the crystal edge 
when the growing interface is convex towards the melt, 
while the inclusions and the cracks are concentrated 
at the center of the crystal when the growing interface 
is concave towards the melt. In their opinion to grow 
a high quality single crystal the interface must be flat 
or convex towards the melt. 

Since the quality of single crystals would be influ- 
enced by the flow state in the melt, the size of the melt, 
and the shape of solid-melt interface, it is important 
to predict the transport phenomena, both in the melt 
and in the solid, during the float-zone crystal growth 
process. Earlier researchers have studied the transport 
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NOMENCLATURE 

convection Biot number 
radiation Biot number 
surface heat transfer coefficient 
dimensionless shape function of the 
solid-liquid interface 
shape function of the solid-liquid 
interface 

thermal conductivity 
length of the material rod 
dimensionless length of the material 

rod 
zone height at the centerline of the rod 
width of the heated region 
dimensionless heated width 

zone height at the surface of the rod 
Marangoni number 
Prandtl number 
dimensionless power 
power density 
dimensionless power density 
dimensionless radius coordinate 
Reynolds number 

T, I T,, 
radius of the material rod 
temperature 
melting temperature 

T7 ambient temperature 
II dimensionless radial velocity 
1 dimensionless axial velocity 
Z dimensionless axial coordinate. 

Greek symbols 

thermal diffusivity 

surface-tension temperature coefficient 
emissivity 
curvilinear coordinate. 
curvilinear coordinate 
dimensionless temperature 
maximum temperature 
dynamic viscosity 
kinematic viscosity 
Stefan-Boltzmann constant 
stream function 
vorticity. 

Subscripts 
1 liquid phase 
n normal derivative on the solid-melt 

interface 
r, z derivatives with respect to I’. : 
s solid phase 

r, g derivatives with respect to <. q. 

phenomena in float-zone crystal growth using some 
simple models. For example, Chang and Wilcox [13], 
Kobayashi [14], Fu and Ostrach [ 151 and Chen et al. 

[ 1 l] have all investigated the effect of thermocapillary 
flow in a model of a floating-zone crystal growth, 
without considering the effect of the solid-melt inter- 
face. Some investigators [l&19] have studied the 
influence of heat conduction on the float-zone growth. 
In general, those conduction analysis studies fall into 

two categories : specifying the ambient temperature 
distribution to predict the shape of molten zone, and 
finding the power requirement for producing a molten 
zone. They did not account for the effect of thermal 
convection. Recently, Lan and Kou [2&22] have 
investigated the interaction between the thermo- 
capillary flow and the solid-melt interface in the 
float-zone crystal growth process. In their approach, 
the ambient temperature distribution is assumed to 
be known, and the pulling speed is selected as the 
characteristic velocity for the thermocapillary con- 
vection in the melt. In their results, the solid-melt 
interface is always concave towards the melt. In the 
real system, the ambient temperature distribution is 
unknown, and the power supplied by the external 
source is known. The results of Kobayashi [16] 
showed that the shape of the solid-melt interface is 
affected by the strength of the external power. There- 
fore, it is of interest to investigate the interaction 

between the thermocapillary convection and the zone 
shape for the different strength of the external power. 

In the present paper we investigate the relationship 
between the power required for producing a molten 
zone and the zone shape through a series of numerical 
computations. The problem examined here is related 
to that of Kobayashi [16]. We go a step further by 
including the effect of thermocapillary convection. 
Buoyancy-driven convection is not taken into 
account. The influences of the heating conditions and 
the properties of the material on the flow fields, tem- 
perature fields, and the shape of the solid-melt inter- 
face are also investigated. In addition the possibility 
of the capillary instability originating from the gas- 
melt interface and convection instability in the melt is 

discussed. 

2. MATHEMATICAL FORMULATION 

Consider a long, circular rod of radius r,, and length 
1 which is heated by a ring heater at the center of the 
rod. The power distribution is assumed to be uniform 
with the heated width 1, and the density q. The molten 
zone is formed and is suspended between the solid 
ends. No crystal grows, and the input power used to 
melt a small portion of the material rod is dissipated 
from the rod surface by thermal convection and/or 
radiation. A schematic diagram of the system is shown 
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in Fig. 1. The melt from the rod contains an incom- 
pressible, Newtonian liquid. The gas-melt interface is 
assumed to have a large mean surface tension with no 
resulting surface deformation. The physical properties 
of the rod are assumed to be the same for both liquid 
and solid phases. The surface tension is considered 
as a linear decreasing function of temperature. The 
buoyancy effect is neglected. 

We chose scales for length, velocity and pressure 
to be r,,, (y?IT,J/p and (yT,,,)/rO, respectively; p is the 
viscosity of the melt, y is the negative rate of change 
of surface tension with temperature, and T, is the 
melting temperature. The dimensionless temperature 
is defined by 0 = (T- T,,,)/T,,,. By eliminating the 
pressure, the dimensionless equations governing 
the steady, axisvmmetic motion of the rod can be -. _ 
expressed in the following form : 

(i) energy equation in the solid region 

o,++,+o, = 0 

(ii) momentum equation in the melt 

1 1 
= w,+ ;Cl&+C0**-- TW 

r 

(iii) stream equation in the melt 

2 

lnsufated 

=7== 

Solid 

I-- 
r0 

Solid 

. 

insulated 

Radiation+ 

Convection (FE.) 

4 

m!j 

FIG. 1. Schematic diagram of the physical system. 

(iv) energy equation in the melt 

Pr.Re ~$.@~-~+,@z 
( > 

=@,,+f@,+@,. W) 

Here, the streamf~nction J, in the r-z plane is given 

by 

u=$, u= -I,, 
r (24 

and the vorticity c.o is defined as 

0 = y-v,. t2b) 

The subscripts r and z denote the partial derivatives 
a/& and @Iz, respectively. 

The dimensionless parameters appearing in gov- 
erning equations are : Pr = v/cl (Prandtl number) and 
Re = yT~r~/~v (Reynolds number), where E is the 
thermai diffusivity and v is the kinematic viscosity. 

The thermal boundary conditions are as follows : 

(i) symmetry at the center line 

O,=O atr=O (3a) 

(ii) energy balance at the surface of the material 
rod 

-0, =Ri,[(@+1)4-Rt4]+Bip(@f1-Rf)-Q(z) 

(iii) 

(iv) 

atr= 1 (3b) 

temperature maintaining the melting point at 
the solid-melt interface 

O=O atz=i(r) (34 

energy balance at the solid-melt interface 

(O,tS = (On), at z = i(r) (3d) 

(v) no heat transfer far from the molten region 

C&=0 atz=L/2 (3e) 

(vi) temperature symmetric at the midplane 

0, = 0 atz = 0. (3f) 

The function Q(z) is given by 

L L 
or-<zz,<-- 

Q(z) = 
( 

0, if-i<z<-2, 2p 
2 

Q, if-$<z<+, 

(3g) 

where Q = qro(kT,) (the dimensionless power 
density), L = l/ro, and L, = &jr,. The dimensionless 
power is defined by P = 2$q/kTm = 2xL,Q. The sub- 
script n denotes the partial derivative of normal direc- 
tion on the solid-melt interface, while the subscripts s 
and I denote the solid and liquid phases, respectively. 
The parameter Rt is defined by Rt = T,/T,, where 
T, is the ambient temperature. The appropriate fluid 



Aow boundary conditions in the molten region are as 
follows : 

(i) symmetry at the centerline, 

$=c0=0 atr=o (4al 

(ii) no normal velocity and shear stress balance at 
the free surface in the melt 

$=O 

(0 = 0; at r = I ; 

(iii) no slip at the solid-melt interface 

(4b) 

(4c) 

*=o (4d) 

$??- t*,+ill = ro at z = i(r), (W 

(iv) symmetry at the midplane 

tj=o=o atz=o. (4f) 

The boundary conditions contain the following 
dimensionless parameters : Bi, = mT,l,r,/k (Biot num- 
ber of radiation) and Bi, = hr,/k (Biot number of con- 
vection), where F: is the emissivity, cr is the Stefan- 
Boltzmann constant and h is the surface heat transfer 
coefficient. 

3. SOLUTION PROCEDURE 

In the present problem only a small portion of the 
rod near the heater is melted. The solid-melt interface 
is curved. Therefore, if the rectangular grid points are 
placed in the physical domain interpolation between 
grid points to represent boundary conditions at the 
solid-melt interface passing through a rectangular 
grid must be used. This results in a complex computer 
code. To avoid this difficulty a boundary-fitted curvi- 
linear coordinate system developed by Thompson rt 
al. [23] has been used to transfor the irregular physical 
domains (r, z) of the solid and liquid regions into two 
rectangular computational domains (5. II). The larger 
temperature and velocity gradients exist near the 
free surface and the solid-melt interface. The grid 
stretching, which provides good resolution near the 
free surface and solid-melt interface, is achieved 
by employing the grid control method developed by 
Middlecoff and Thomas [24]. 

The shape of solid-melt interface is unknown (1 
priori, but must be determined as part of the overall 
solution. By assigning a specific shape to the solid-- 
melt interface and temporarily discarding the Stefan 
condition (3d), a complete solution of the velocity 
and temperature fields can be determined from the 
governing equation (1) and boundary conditions (3) 
and (4). The Stefan condition then provides a means 
to examine whether the solid-melt interface shape is 
a required solution or not, and a basis for computing 
an improved estimate of that shape when the con- 
dition is not satisfied. 

When a given estimated shape z = i(r) for the solid- 
melt interface is incorrect, the heat flux on the inter- 
face cannot be balanced. The imbalance 6(r) can be 
written in the form 

(5) 

where J = rrlq - r:z,, and the subscripts [ and q denote 
the partial derivatives a/al and r?ja~, respectively. The 
imbalance 6(r) may not be to zero, due to an incorrect 
interface shape. We use 6(r) to correct the magnitude 
of the local displacement of the given interface, and 
the new shape i(r) of the solid-melt interface is given 

by 

i{r)"-- = i(r)"'" -j--q& (61 

where o is a constant determined by numerical exper- 
iment with typical values being 0( 10 ‘). 

The discrete form of the system is constructed using 
standard second-order central differencing. A brief 
summary of this computationai procedure involves 
the following steps. The solution of the difference 
equations begins with an initial shape of the solid--melt 
interface determined by solving the pure conduction 
equation. The initial guesses for 0. (0 and II/ over the 
entire computational domain are then selected. The 
liquid and solid regions are transferred to com- 
putat~onai domains separately, using a boundary- 
fitted curvilinear coordinate system that has coor- 
dinate lines coincident with the current boundaries. 
The differential equations for IU and 0 are integrated 
by the predictor-corrector- multiple-iteration tech- 
nique (PCMI). The PCMI method treats the < direc- 
tion implicitly and the q direction explicitly. The $ 
equation is solved iteratively using the LSOR method. 
The iteration process is assumed to converge when the 
relative error of two successive iterations is less than 
10 ‘. The new shape of the solid-melt interface is 
determined from equation (6). The whole procedure 
is repeated iteratively until d(r) -c 5 x 10 ‘. 

4. RESULTS AND DISCUSSION 

The numerical calculations described in the pre- 
vious section were performed in double-precision 
arithmetic on the National Central University 
IBM540 and HP730 workstations. The chosen com- 
putational domain in the 2 direction must be large 
enough to approximate the assumption of a long 
material rod. For most materials the melting point of 
the material rod is much higher than the ambient 
temperature (Rt < 1). Therefore, in the present study. 
the d~mensionIess length of the rod and the value of 
Rt are selected as L = 20 and Rt = 0.2, respectively. 
To determine the proper number of grid points, cal- 
culations were performed using different grid points. 
Table 1 shows the effect of grid distributions on the 
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Table I. Effect of grid points on the solution for Pr = 0.1, Re = 100, Bi, = 0.1, Bi, = 0, Rt = 0.2. P = 12.56, 
andL,=2 

NR, Nz, NZ,y 11,31,31 21, 31, 31 31,31,31 41,41,41 51, 51,41 

* max 0.1385 0.1384 0.1381 0.1384 0.1383 
@,,X 0.6799 0.6806 0.6814 0.6822 0.6815 
LA 3.802 3.798 3.809 3.874 3.885 
L, 4.095 4.094 4.107 4.110 4.117 

accuracy of the numerical solution for Pr = 0.1, 
Re = 100, Bi, = 0.1, Bi, = 0, Rt = 0.2, P = 12.56 and 
I$ = 2. In Table 1, L, and L, represent the zone height 
at the centerline and surface of the rod, respectively, 
while NR, HZ, and NZ, denote the grid points of r 
direction and z direction on the melt and solid regions, 
respectively. The results showed that the difference in 
the maximum stream function $,,, and the maximum 
temperature O,,,, L,, and L, calculated using different 
grids is less than 1%. To save computation time, the 
grid was selected as (3 1,3 1,3 1) for lower Pr Re Q. Due 
to the effect of the thermocapilla~ convection, the 
velocity and temperature gradients near the solid-melt 
interface increase as the magnitude of Pr Re Q 
increases. Hence, the denser grid distribution is needed 
for higher Pr Re Q. The grid distribution selected by 
the present computation is (31, 31, 31), (41, 41, 41), 
(51,51,4l),or(61,61,4l),dependingon thestrength 
of Pr Re Q. 

Figures 2 and 3 illustrate the influence of the input 
power on the solid-melt interface, the flow fields, and 
the temperature fields in the melt for two different 
values of Pr. In Figs. 2(a) and 3(a), the flow motion 
is counterclock~se because of the effect of the ther- 
mocapillary force. Figures 2 and 3 show that $J, 
increases as P increases, which means that the strength 
of the thermocapillary convection increases with the 
increase in input power. It is interesting to note that 
the Prandtl number, Pr, is defined as the ratio of 
momentum diffusi~ty to thermal diffusivity. For 
Pr = 0.01, the temperature field (Fig. 2b) is governed 
by conduction since the momentum diffusion is much 
less than the thermal diffusion. The energy transport 
in the heated region is mainly in the radial direction. 
Initially, the molten zone is formed on the surface in 
the heated region and the zone grows radially as well 
as axially with the increase of input power. When 
the molten zone without the core is formed the heat 
transport in the axial direction becomes significant 
and with further increase of the input power the 
growth rate of the molten zone near the center 
becomes faster than it is in the region near the gas- 
melt interface because of the radiation and convection 
loss on the surface. Hence, the present results for 
Pr = 0.01 (Fig. 2) show that the solid-melt interface 
varies from convex towards the melt, through flat to 
concave, when P increases. Obviously, these results 
are consistent with those of Kobayashi 1161. For 
Pr = 10 the influence of momentum diffusion 
becomes more significant with the increase of the input 

power. Therefore, the energy transfer in the axial 
direction is enhanced by the momentum transfer gen- 
erated by the thermocapillary flow. Obviously, the 
energy transfer due to the momentum transfer in the 
region near the gas-melt interface is more than it near 
the center. This is why the results for Pr = 10 (Fig. 3) 
show that the solid-liquid interface is always convex 
towards the melt and the zone length is greater than 
it for Pr = 0.01 with the same input power. From Fig. 
3(b), we see that the isothermal line is distorted more 
drama~~lly for higher P due to the increase of the 
strength of the thermocapillary convection. 

Figures 4 and 5 demonstrate the effect of the Prandtl 
number for Re = 1000, Bi, = 0.1, Bi, = 0, P = 5.66 
and Lp = 2. In Fig. 4, the results show that the molten 
zone enlarges, the absolute value of I&,,=, increases, 
and the maximum temperature O,,, decreases, when 
Pr increases. The isothermal line contour changes 
drastically as Pr increases. For Pr = 10, the iso- 
thermal line is distorted and most of the temperature 
variation occurs near the solid-melt interface and the 
heated region due to the effect of the thermocapillary 
convection. The increase of the molten zone for higher 
Pr is caused by the effect of the thermocapilla~ con- 
vection which increases the heat transport in the axial 
direction. For Pr = 0.01, the surface temperature 
shows a Gaussian distribution (Fig. 5) which is similar 
to that obtained by the conduction model with uni- 
form input power calculated by Carlberg and 
Levenstam [19]. It is obvious that, given fixed other 
parameters, the surface temperature gradient along 
near the heat source decreases when Pr increases. But, 
the surface temperature gradient near the solid-melt 
interface gets larger for higher Pr. 

Figure 6 shows the effect of the input power on the 
zone heights for Be = 1000, Bi, = 0.1, Bi, = 0, and 
Lp = 2 with two different Pr. When Lc < LS, the solid- 
melt interface is convex towards the melt. On the other 
hand, the solid-melt interface is concave for L, > L,. 
When L, < L,, the solid-melt interface is flat. For 
Pr = 0.01 and P = 3.9, the results show L, = L, z Lp 
This is consistent with results obtained by Kobayashi 
1161. For Pr = 10, the solid-melt interface is always 
convex towards the melt (L< < L,). From Fig. 6, we 
can see that the growth rate of the molten zone for 
Pr = 10 is much faster than for Pr = 0.01 when P 
increases. For Pr = 0.01, the zone heights increase 
steeply until Ls = L,, and then increase gradually with 
the increase in input power. On the contrary, for 
Pr = 10, the zone heights always increase steeply. 
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Frc. 2. Contours for (a) streamlines and (b) isothermals in the melt for Pr = 0.01, Re = 1000. Bi, = 0. 
Bi, = 0.1~ and L,, = 4 with three different P. 

Based on the results of the capillary instability, the power for high Prandtl number materials is smaller 
maximum zone length is restricted by the ~aylei~h than for smaU Prandtl number materials. It is possible 
limit (I = 27~). For L, >22n, capillary instability sets that the capillary instability for small Prandtl number 
in and the molten zone may break up. It is clear that materials never occurs because the zone height is 
the power requirement for forming a molten zone with always less than the Rayleigh limit no matter how 
,L7 = 2a for Pr = 10 is much smaller than it is for large the input power is. Since the present approach 
Pr = 0.01. This suggests that the maximum input does not consider the effect of surface deformation of 
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the gas-liquid interface the convergent solutions are nitude of the Reynolds number is independent of the 
still possible when the zone height exceeds the Ray- heating condition and is strongly influenced by the 
leigh limit. property of the melt and the geometry of the rod. Its 

The Reynolds number, Re, represents the ratio of order is around IO2 to lo4 for most oxide materials, 
the surface tension to the viscous force. The mag- and over IO4 for semiconductor materials. Figure 7 
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I+ = 2, and P = 5.66 with three different Pr. 

displays the influence of Re for Pr = 10, Bi, = 0.1, for higher Rr. It is clear that the strength of the ther- 
Si, = 0, p = 5.655, and L, = 2. In Fig. 7 the results mocapillary convection increases with increasing Re. 
show that with other parameters fixed Y,,, gets larger Because the input heat is maintained at a constant 
and the isothermal line is more signi~cantly distorted value O,,, decreases with increasing Re due to the 
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= 5.66 with 

stronger thermocapillary convection. The zone shape 
and height is almost invariant with the change of the 
Reynolds number. 

Figure 8 shows the influence of the width of the 
heated region Lp. In Fig. 8(a), the present results for 
Pr = 0.01 are consistent with those of Kobayashi [ 161 
in that the powers required to form the molten zone 
and for L, = L, are strongly dependent on Lp. In Fig. 
8(b) the results show that for Pr = 0.01 and 10, the 
zone height of LP = 4 is less than that of L, = 2 for 
smaller input power, and then becomes larger than 
that of Lp = 2 for higher input power. The trends for 
Pr = 0.01 are similar to that obtained by the con- 
duction analysis [ 191. The radiation Biot number, Si,, 

represents the ratio of the surface radiation to the 
conduction inside the rod. Figure 9 shows the intlu- 
ence of Si, on the zone heights of the rod. The mini- 
mum power required to form a molten zone for 
Bi, = 0.05 is smaller than that for Bi, = 0.1 because 
the net heat input the rod increases with the decrease 
of Bi,. The effect of the convection Biot number, Bi,, 

is also investigated. They show similar trends as the 
influence of the radiation Biot number. 

Following Velten et al. [S], the Marangoni number 
can be defined by 

Ma = 2Pr Re O,,,/L,. 

This is usually used to represent the strength of the 

FIG. 6. Zone heights vs input power P and Pr for Re = 1000, Bi, = 0, Bi, = 0.1, and L,, = 2 
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thermocapillary convection, Figure 10 shows the ence along the gas-melt itlterface and it increases as 

influence of the input power on the ~aran~~~i num- P increases. The increase rate of O,,,, for Pr = 0.0 I is 

her and O,,, for Re = 1000, Bi, = 0.1, Si, = 0, and much higher than for Pr = 10, and the magnitude of 

LP = 2 with fw* different Pr. The maximum tem- O,,, for Pr = 0.01 is always larger than for Pr = IO. 

perature O,,, also represents the temperature differ- On the contrary, the growth rate of the zcme height 
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Ei, = 0.1 with (a) Pr = 0.01 and (b) Pr = 10. 

for Pr = 10 is much faster than for Pr = 0.01 (Fig. 6). 
Figure 10 shows the expected results that the Mar- 
angoni number increases with increasing of P for 
Pr = 0.01, and it decreases with increasing of P for 
Pr = 10 when P > 3.5. Figure 11 iflustrates the vari- 
ation of the Marangoni number with the surface zone 
height L,. For smaller Pr, the heat transfer is domi- 
nated by conduction in the radial direction. When the 
input power increases, the increase in the temperature 
difference along the gas-melt interface is higher than 
that of L,. This is why the Marangoni number 
increases with the increase of L, for Pr = 0.01. The 

3i, = 0, and 

Marangoni number increases abruptly as L,/2 > 1.9, 
since L, increases slowly as P increases (Fig. 6). For 
Pr = 10, the heat transfer in the axial direction is 
enhanced by the et&et of the the~ocapiliary convec- 
tion. In Fig. II, the Marangoni number for Pr = 10 
increases with increasing L,/2 until LJ2 reaches a cer- 
tain value : L,/2, which is very close to the value of 
L,/2. For L,/2 > L,/2, the Marangoni number 
decreases as LS/2 increases. As L,/2 < L,/2, the con- 
vection effect is stiil insignificant and the heat transfer 
is mainfy in the radial direction. Therefore, the Mar- 
angoni number increases slightly with the increase of 
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L,,/2. For L,/2 > L,/2, the thermocapillary convection 
becomes dominant and the increase in the temperature 
difference along the gas-melt interface is less than it 
is for L, with the increase in input power. Hence, 
the Marangoni number decreases with the increase of 
L,/2. According to the experimental results of the half- 
zone model [l-5], the flow instability is occurring in 

the presence of the stronger thermocapillary con- 
vection (higher Marangoni number). The magnitude 
of the critical Marangoni number is about 0(104), 
and decreases strongly as Pr decreases. Based on our 
results, we can conjecture that the possibility of the 

Ma 

occurrence of thermocapillary-convection instability 
in the melt for Pr = 0.01 is higher than it is for Pr = 10. 

Figures 12-14 show the influence of Re, L,. and Bi, 

on Mu. In Fig. 12, the results show that the magnitude 
of Ma is strongly dependent on the order of Re and, 
as one would certainly expect, increases with increas- 
ing Re. The trend of the variation of Ma with L, is 
similar for two different Re. Obviously, for fluids with 
higher Re the instability caused by the thermocapillary 
convection may appear before the capillary instability 
sets in. On the contrary, for fluids with smaller Re the 
thermocapillary-convection instability never occurs. 
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FIG. 10. Marangoni number and maximum temperature Q,,, vs input power P and Pr for Re = 1000, 
Bi, = 0, Bi, = 0.1, and L, = 2. 
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FIG. Il. Marangoni number vs surface zone height L, and Pr for Re = 1000, Bi, = 0, Bi, = 0.1, and 15, = 2. 

Figure 13 illustrates that the magnitude of Mu for 
LP = 2 is higher than for LP = 4. For Pr = 10, the 
variation of Ma with L, still shows a similar trend, in 
that Mu increases with increasing L, for L, < L,,,, and 
decreases with increasing L, for L, < L,. It is obvious 
that the order of the Marangoni number is strongly 
influenced by the heating conditions. With a fixed 
zone height the temperature gradient along the gas- 
melt interface is higher for a larger input power. The 
power required to reach a certain value of L, increases 
as Bi, increases (Fig. 9). This is the reason that in Fig. 
14 the Marangoni number increases with the increase 
of the radiation loss. The effect of the convection Biot 

Ma 

2000 

f 
b 

1500 1 

number, Si,, on itrpQ is similar to that of the radiation 
Biot number. Therefore, the better heat transfer along 
the surface of the material rod will increase the mag- 
nitude of the Marangoni number. 

5. CONCLUSIONS 

It is well known that the quality of single crystals is 
influenced by the shape of the solid-melt interface and 
the thermocapillary-convection instability in the melt, 
while the size of the melt is controlled by the capillary 
instability o~~nating at the gas-melt interface. Based 
on the opinions of Kitamura er al. [12] the solid- 

- Rez1000 

- - - Rtb5000 

FIG. 12. Marangoni number vs surface zone height L, and Re for Pr = 10, Bi, = 0, Bi, = 0.1, and Lp = 2. 
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FIG. 13. Marangoni number vs surface zone height L, and width of the heated region Lp for Rt = 1000, 
Si, = 0. and Bi,. = 0.1 with (a) Pr = 0.01 and (b) Pr = 10. 

melt interface should be maintained as flat or convex 
towards the melt, to grow high quahty single crystals. 
The present results show that the shape of the sohd- 
melt interface is affected by the input power, the width 
of heated region, the Prandti number, the radiation 
Biot number and the convection Biot number. For 
Pr = 0.01, to keep the poiid-melt interface flat or con- 
vex towards the melt, the input power should be main- 
tained at the lowest level practical. For Pv = 10, the 
solid-melt interface is always convex towards the 

melt. For a fixed input power, the strength of the 
thermocapillary convection is enhanced by the 
increase of the Prandtl and Reynolds numbers, and 
by the decrease in the width of the heated region, 
radiation, and convection loss. 

Thermocapillary convection enhances the heat 
transfer in the axial direction, then enlarges the length 
of the molten zone. Hence, the maximum input power 
to produce a melt with a zone height less than the 
Rayleigh limit is reduced by increasing the effect of 
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FIG. 14. Marangoni number vs surface zone height L, and Bi, for Pr = 10, Re = 1000, Si,. = 0, and Lp = 2. 
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